Иванов-Петров Александр (ivanov_petrov) wrote,
Иванов-Петров Александр
ivanov_petrov

Лекции Тимофеева-Ресовского 1964 г.

Блестящее, все-таки, изложение. Лекции уже очень старые - а читаются как новые.

"Нахождение научного работника вне современных научных концепций ведет в любой отрасли современного естествознания к плаванию в бесконечных деталях и частностях окружающего нас и подлежащего изучению внешнего мира без возможности действительно обновлять и строить новые научные концепции.

...Биологи до сих пор не привыкли сознавать того, как, к примеру, смешон и жалок физик, чем бы он ни занимался: классической механикой, электричеством, оптикой, акустикой, ядерной физикой или заумными проблемами современной теоретической физики, если он не стоит на позициях современных физических концепций. Без этого он никуда не годится и ничего путного не сделает ни в одной области. А большинство наших биологов, с этой точки зрения, если сравнивать с физикой, стоят на концепциях физики примерно начала прошлого века, эдак, домаксвелловской физики. И не находят в этом ничего особенного, а это вещь страшная. Действительно, если вдуматься, вещь страшная — ковыряться в чем-то с точки зрения давным-давно пройденных позиций и совершенно не знать того, что современные биологические позиции капитально от них отличаются.

...Это вещь действительно довольно страшная, и она же часто ведет к наивным, совершенно устарелым оценкам и классификациям различных разделов биологии. Между прочим, данная ущербная точка зрения ведет к модному у нас наплевательскому и пренебрежительному отношению ко всем описательным разделам биологии, классической
ботаники и зоологии. Это опятьтаки есть не что иное, как наивная безграмотная оценка с точки зрения совершенно устаревших общих позиций.

Так вот, основную биологическую проблему, выражаясь современным языком, можно сформулировать так: это проблема передачи наследственной информации от поколения к поколению и реализации этой информации в каждом поколении. В сущности, такая формулировка покрывает всю основную проблематику биологии.

...Я рассказываю вам это потому, что, насколько мне известно, в убогих программах наших биофаков и медицинских институтов теория многополовости обычно, к сожалению, не излагается. Но это вещь очень существенная, потому что она позволяет, ну, понимать не то чтобы в каузальном смысле, но феноменологически, что такое половость вообще у организмов на нашей планете. Что двуполовость — это не есть нечто само собой разумеющееся и обязательное у живых организмов, а нечто, по-видимому, произошедшее эволюционно и стабилизировавшееся на нашей планете в качестве (для нас пока еще не понятно почему) наиболее выгодного и экономного.

...очень существенной вещью является то, что в естествознании не бывает революций в том смысле, как это понятие определяется в социологии, в жизни человеческого общества — то есть перерыв традиций, замена чего-то старого формально новым.
В науке обычно имеются ведущие общие концепции, в недрах которых зарождаются зерна новых концепций, то есть накапливаются факты, высказываются соображения, не имеющие пока ведущего значения и должные теоретически подчиняться существующим концепциям. Этот процесс накопления экспериментального или описательного материала продолжается, приводит к ситуациям, которые философствующие журналисты, журналиствующие философы и другие подобные им люди, живущие на достижениях других людей (так это вежливо сформулируем), часто начинают изображать в виде неких катастроф, революций, капитальных изменений и так далее. На самом деле это не так.

...Когда в XVI и начале XVII века появились ученые мужи биологического направления, то в них еще сильно отрыгивалась средневековая схоластика — любовь к рассуждениям. Эта любовь к рассуждениям не покидает многих биологов до сих пор. Под любовью к рассуждениям я понимаю более-менее схоластические рассуждения о вещах непознанных и непонятых. В ряде разделов биологии это, к сожалению, до сих пор довольно распространенная вещь: чрезвычайно ученые рассуждения о том, о чем, в сущности, при ближайшем рассмотрении пока рассуждать нечего. Нам известно столь мало, что дееспособных рассуждений в смысле естественнонаучной методологии построить нельзя.

Таким образом, экспериментальным путем он окончательно разъяснил природу пола у растений. Для своего времени это были замечательные и очень точные опыты. При этом он разработал экспериментально точную методику скрещивания, с избеганием возможных загрязнений, неточностей и так 21 далее в проведении таких опытов. Работы Кельрейтера стали широко известны, правда, как и бывает в таких случаях, до начала XIX века еще находились ботаники, которые продолжали прения на тему о том, есть ли пол у растений. Но, конечно, для разумных людей дело опытом Кельрейтера было окончательно разъяснено.

Итак, Найт ввел понятие «элементарных признаков» как таких, которые ни в каких скрещиваниях дальше не подразделяются и не рассыпаются на более элементарные.

Следующая ступень — появление двух французских «джентльменов». Один из них, швейцарский француз Сажре, был растениеводом, преимущественно садоводом. Он знал о работах Кельрейтера и Найта и, исходя из них, проводил свои скрещивания. Другой француз, Ноден, тоже был растениеводом, но занимался большей частью зерновыми культурами: селекционировал их и выводил новые сорта. Он тоже знал работы Кельрейтера и Найта. Оба этих француза также были осведомлены и о работах друг друга. И вот они, — я уж не помню, да это и не существенно, за кем какие приоритеты, — сделали еще один шаг вперед. Они качественно показали очень существенную вещь: если мы скрещиваем два сорта, отличающиеся друг от друга комплексом признаков, и если эти сорта были до этого чистыми, долго разводившимися самоопылением, то получается очень типичная картина. Первое поколение от таких скрещиваний, и это опять-таки было известно растениеводам давно, получается более или менее промежуточное. Но Сажре и Ноден подметили, что, главным образом, оно весьма однородное, все индивиды первого поколения похожи друг на друга почти в той же мере, как похожи друг на друга индивиды в пределах чистого сорта. А их промежуточность кажущаяся, если исходить из найтовского понятия элементарных признаков.

А Сажре, и в особенности Ноден, сформулировали это уже как правило: что найтовские элементарные признаки могут быть доминантными или рецессивными, то есть проявляться или не проявляться у гибридов первого поколения. Но при этом они никогда не исчезают и всегда проявляются в дальнейших поколениях, обычно уже во втором. (Особенно если число индивидов во втором поколении достаточно велико, то есть достаточно велика вероятность, как мы сказали бы сейчас, их проявления.) Это, конечно, было очень существенно.

Итак, это 30, 40, 50е годы XIX века. Материал был огромен, особенно у Нодена, он действительно работал в качестве селекционерапрактика, выводил новые сорта различных культурных растений. Он был человеком не только трудолюбивым, но и трудоспособным, каким и должен быть каждый научный работник, и, кроме того, прекрасным наблюдателем. Он смог на огромном материале проследить в скрещиваниях судьбу найтовских элементарных признаков и вывести правило однородности первого поколения. Он вывел правило не исчезновения элементарных признаков, а лишь их доминантности или рецессивности (этих терминов он еще не знал, не применял их), и правило проявления признаков, вновь начинающееся в гибридах во втором поколении, и большого разброса новых комбинаций во втором поколении. Надо сказать, что в общем русле развития биологии работы Найта, Сажре и Нодена не играли никакой роли. Это, так сказать, не считалось тогда высокой ученой биологией, а была «низменная» биология — сельское хозяйство какое-то, садоводство, — и ученые дяденьки биологического толка не обращали на них внимания и блестяще проглядели все это. Так же, как вам известно, проглядели они и следующий, завершающий этап этого первого периода развития метода скрещиваний — работы Менделя.

Важно ясно себе представлять: Найт знал работы Кельрейтера, Сажре знал работы и Найта, и Кельрейтера, Ноден знал работы и Сажре, и Найта, и Кельрейтера, то есть все это логически развивалось. Мендель, в свою очередь, знал о работах Нодена, Сажре, Найта и Кельрейтера и совершенно сознательно логично развивал линию исследований, связанных с кельрейтеровским точным методом скрещивания у растений.

Сажре и Нодену все бесконечное разнообразие новых комбинаций во втором поколении было нужно и интересно (может быть, потому, что они были селекционерами-практиками). Из него они выбирали материал для своей дальнейшей селекции. Гриша же Мендель был, как известно, мних Ему было, как говорится, наплевать на всю Западную Европу. Никакие практические проблемы его не интересовали, поэтому он так здорово двинул науку. Что и всем нам надлежит всегда помнить: науки продвигаются тем быстрее, точнее и лучше, чем меньше они имеют дело с практикой.

Но замечательно не то, что Мендель открыл менделевские правила; в сущности, это было уже открыто Найтом, Сажре и Ноденом, только недостаточно точно сформулировано. Величие Менделя в другом: он имел смелость высказать одну наглую гипотезу. Он стал думать, почему получается такая картина.

И Мендель высказал наглую гипотезу, а почему она наглая, я сейчас поясню. Он сделал предположение, что действительно каждый половой организм содержит в отношении каждого элементарного признака два зачатка, два наследственных фактора. Один от папаши, другой — от мамаши. Но каким-то образом — при созревании половых клеток, яйцеклеток и пыльцы — в каждую зрелую половую клетку из каждой такой пары факторов попадает лишь один. Я назвал это наглой гипотезой, потому что во времена Менделя, как мы дальше с вами увидим, не было ничего точно известно ни о клеточном делении вообще, ни тем более о делении в созревании гамет, ни о механизме оплодотворения. Совершенно ничего.

Вот, собственно, основная работа Менделя. И конечно, главная его заслуга не в открытии доминантности и расщепления, которые были открыты до него и Найтом, и Сажре, и Ноденом. Правда, они не подвели под это количественного базиса. Величие Менделя именно в этой его наглой гипотезе, в том, что он начал думать и придумал, как можно объединить полученные количественные результаты.

...Как это часто бывает, примерно одновременно, в 30-40-е годы, несколькими людьми — немцами Шлейденом и Шванном, чехом Пуркинье и русским Черняевым — была сформулирована клеточная теория строения живых организмов (то есть, что все живые организмы либо состоят из одной свободно живущей клетки, либо из разных специализированных тканей, а каждая ткань состоит из специализированных клеток; что, во всяком случае, всегда и всюду элементарной частью жизни является клетка).

...И вот он у своих коллег-биологов по факультету стал спрашивать: «А скажите, пожалуйста, вот я слышал, что яйцеклетки большие, а спермии маленькие, так вот какого они размера? Какого размера самые маленькие спермии?» Он собрал целый ряд мнений, ведь тогда уже существовали окулярные микрометры, и вообще микроскопы с тех пор усовершенствовались немного, как известно. Ему сказали ребята, сказал Кольцов, Мензбир и ряд других грамотных цитологов, что у многих животных действительно спермии крошечные, и в оплодотворении принимает участие только головка спермия, объем ее примерно такой-то. Тогда Колли сделал следующее: он разделил объем головки маленьких спермиев на объем макромолекул белка и получил вполне определенную величину. Я не помню сколько, ну, порядка 10 или 20 тысяч, не бог весть что особенное. Не астрономические цифры.
Может, он тогда немножко завысил среднюю величину белковой молекулы, неважно. Порядок величин получился разумный, и он сказал себе: «Так, вот в этой головке спермия должно содержаться все то, что предыдущее поколение передает последующему». Вот в этой головке спермия, как представляли себе дураки-анималькулисты XVII века, сидит весь осетр со всеми чешуйками и плавниками и усиками около рта. И в распоряжении этого «осетра» вполне конечное число молекул.

Из этого нужно умозаключить весьма для того времени занимательную вещь, что на каждый признак при передаче от поколения к поколению у природы в распоряжении не больше одной молекулы. Вот это он и доложил, но, как и следовало ожидать, его доклад не возбудил всеобщего интереса, потому что биологи тогда не были готовы к восприятию таких вещей. К счастью, несколько молодых исследователей, в частности два замечательных экспериментальных русских биолога Николай Константинович Кольцов и Владимир Васильевич Лепешкин (крупнейший физиолог растений своего времени, очень рано умерший), очень этим заинтересовались.И как потом неоднократно говорил Кольцов, это до известной степени на всю жизнь определило, так сказать, доминанту его исследований, заставило его заинтересоваться физикой клетки.

Тогда цитологи, разобравшись в митозе и мейозе, прочитавши менделистов, и даже самого Менделя, сказали: «Господи боже мой, митоз и мейоз, что это такое? Это и есть видимое под микроскопом менделевское расщепление, и больше ничего. Оплодотворение и есть не что иное, как видимое в микроскоп менделевское расщепление, очень просто!»
Вот на этом, в сущности, и было закончено построение предпосылок хромосомной теории наследственности. Дальше спорить с хромосомной теорией наследственности могли только чудаки, невежды и ретрограды. А вот детально разрабатывать ее было нужно.

На этом основании Бриджес построил полигенную теорию пола, то есть что развитие пола с какого-то момента зародыша направлено «налево», причем я опять не считаю «левачами» дам; в общем, расхождение происходит под влиянием многих генов в двух направлениях. Имеются гены, факторы, толкающие в «самцовую» сторону, и факторы, толкающие в «самковую» сторону. И этим-то и определяется эта штука — в X-хромосомах сидят у дрозофилы преимущественно «самковые» факторы, поэтому два А + два Х дает самку, а ежели к двум А прибавить один X, получается самец. Так сказать, «самцовые» гены, которые сидят преимущественно в аутосомах, перетягивают.

...Обычно смертность мужского пола бывает выше. Это опять-таки может явиться результатом эволюционного отбора, ну, скажем, у стадных животных, у млекопитающих, так сказать, магометанского вероисповедования, где имеется какой-нибудь бык или марал, который гоняет с собой целый гарем. Значит, избыток быков ведет только к лишним дракам и мордобою. Потребность магометанских арабов во многих женах удовлетворялась, как известно, тоже мордобоем — мужики все время воевали и истребляли друг друга, и поэтому примерно на полдюжины дамского пола сохранялся один мужик, и все было ко всеобщему удовольствию. И эволюционно у определенных видов, если это им выгодно, может создаваться вот такая дифференциальная ранняя эмбриональная смертность.

То, что мы с вами рассмотрели, в особенности в прошлый раз и сегодня, это и есть то основное, что определяет направление мысли в области не только генетики, но и вообще общей биологии, и что формирует современные биологические концепции. Деталей в биологии до черта, а наиболее общих положений совсем немного. Я бы сказал, что ни один биолог никогда не должен забывать осетров и севрюг, рождающихся из икринок, являющихся одной клеткой. Это все-таки основная, самая глубокая и самая удивительная биологическая проблема, которая существует на Земле.

Я надеюсь, что все вы сейчас ясно представляете, чем занимается экспериментальная генетика. Экспериментальная генетика с помощью метода скрещивания анализирует наследование элементарных наследственных вариаций, мутативно возникших аллелей, единиц кода наследственной информации, именуемых
генами.

Геномом, кстати, мы называем генный набор гаплоидного набора хромосом — вот точное определение генома. Никто его, к сожалению, никогда точно не определял. Это цитогенетическое выражение отличается от генотипа вот в каком отношении: генотипом мы называем гаплоидный набор генов лишь у гаплоидных организмов, а у нормальнодиплоидных генотипом мы называем диплоидный набор соответствующих аллелей.

Прежде всего нужно разобраться в вопросе о числе генов. О числе генов в общей форме, о том, сколько генов может быть у вида, мы уже говорили. Такими более-менее точными данными мы располагаем для Drosophila melanogaster, у которой около шести тысяч генов. И мы можем с очень большой достоверностью указать нижнюю и верхнюю границы, ну, примерно между пятью и восемью тысячами генов — ни больше ни меньше. ...Сейчас мы уже можем утверждать, что у более-менее сложных многоклеточных организмов число генов не может быть равно сотням или миллионам.

Хочется обратить ваше внимание на то, что всем вам известно, но иногда забывается: что число генов как таковое, также как число хромосом, в сущности, не состоит ни в каком соответствии, ни в прямом, ни в простом, с филогенией, так сказать, с эволюционным прогрессом и с иерархической лестницей существ.

Дарвин же сформулировал естественно-историческую теорию эволюции, вскрыв понятие, это даже, собственно, не понятие, а общее наблюдение о том, что, во-первых, в живой природе всюду, всегда, у всех видов имеется перепроизводство потомков. Во-вторых, имеется изменчивость, и из этого следует то, что принято называть борьбой за существование, или конкуренцией за достижение репродуктивного возраста. Из этих предпосылок Дарвин вывел принцип борьбы за существование, который является одним из очень немногих биологических принципов в мире.

Эволюционисты же просмотрели и экспериментальную генетику — это особенно странное явление в истории науки. Собственно, то, что им кровно было необходимо для того, чтобы продолжать разумно работать в области эволюционной теории, они проглядели. Наоборот, по известной консервативности и пассивности всякие профессора ботаники и зоологии открещивались, отмахивались, говорили: ну, это там какой-то у цветочков цвет лепестков или какие-то там лабораторные признаки у каких-то дрозофил, это все нам неинтересно, это не имеет, мол, отношения к эволюционной проблематике — просмотрев, прямо надо сказать, по типичной для массы биологов методологической малограмотности, то обстоятельство, что, в сущности, изучение генетики, то есть учения об изменчивости и наследственности признаков и свойств живых организмов, является совершенно обязательной основой для понимания протекания эволюционных механизмов
И вот лишь в 20-е годы нашего века, и — это очень типично — не со стороны эволюционистов и не классических зоологов, ботаников, физиологов или эмбриологов, а именно со стороны генетиков возникла попытка нового освещения эволюционной проблематики.

Вот этими работами параллельно с развитием экспериментальной популяционной генетики была создана эволюционнопопуляционная математика — сейчас изрядная дисциплина с хорошо развитым математическим аппаратом, во главе которой стоят Фишер, Холден, Хогбен, Райт. В 30-е годы некоторое участие в этом начал принимать наш крупный математик Колмогоров, но потом, к сожалению, из-за бездны других дел отошел от этого, к сожалению, не оставив учеников, которые бы продолжили это дело. Им были опубликованы только две работы эволюционно-математического содержания. Это было второе развивающееся направление — популяционно-эволюционная математика (а первое — экспериментальноэволюционная генетика).

И вот ко второй половине 30х годов учение о микроэволюционных процессах созрело для выделения в хорошо сформировавшееся направление. Ну, сами термины «микроэволюция» и «микроэволюционные процессы» совершенно случайно пришлось ввести в литературу мне, в качестве, так сказать, некоторой антитезы макроэволюции. Подразделение на макро- и микроэволюционные направления мы стали применять в нашей группе, затем в несколько ином смысле это переняли Гольдшмидт и Хаксли.

Так что же такое микроэволюция? Я вам ранее охарактеризовал макроэволюцию. Так вот, в отличие от нее, микроэволюцией можно называть процессы, которые касаются сравнительно малых пространств, то есть сравнительно ограниченных территорий, коротких промежутков времени, низших таксонов; в основном изучается внутривидовая изменчивость, и задачей является изучение видообразования в узком смысле этого слова. То есть изучение пути от изменчивости наследственных признаков в природных популяциях до формирования видов, понимая под видами (точное определение вида я вам потом дам) группы индивидов и популяций, обладающих общими признаками и отделенных от сходных групп в природных условиях практически полной изоляцией, то есть нескрещиваемостью. Я подчеркиваю, в природных условиях, потому что мы дальше увидим, что это существенно.

Быть грамотным современным биологом, не зная генетики и микроэволюции, по-моему, нельзя. И даже наиболее талантливые и работящие современные биологи, не имеющие генетикомикроэволюционной «закваски», как этому учит рассмотрение того, что делается в современной биологии, не делают ничего существенного, а занимаются «догонянием» и «перегонянием», а это самое печальное занятие в науках. И этим объясняется то обстоятельство, что большинство действительно принципиально нового и интересного вот уже почти четверть века, к сожалению, приходит к нам из-за границы. Это очень печально. И объясняется вот этим отсутствием «закваски» новых
научных концепций у наших биологов. Это действительно крайне важная и немножко, я бы сказал, у нас трагическая проблема, к которой надо относиться на полном серьезе, не впадая в то же время в звериную серьезность.

Рассмотрение нужно начинать с определения того, что же является той элементарной вещью, структурой, предметом, с которым мы сталкиваемся при рассмотрении эволюционных процессов. Раньше, да и сейчас многие эволюционисты, такие «макроэволюционисты», уже скучные и неинтересные, на это отвечают: «Ну, вот живой мир, значит, мир животных, растений, микроорганизмов» и всякая такая штука. Ну, это, конечно, словоблудие. Это не ответ. Виды? Да нет, и не виды, конечно. Нужно вычленить самые мелкие вещи, которые в живой природе имеют, так сказать, реальное историческое значение. Это, конечно, не отдельные индивиды, потому что отдельный
индивид обычно не может размножаться. Парочка индивидов, самец и самка, — тоже нет, потому что это слишком случайная штука. Вот один из них загнулся, и «кончено дело, зарезан старик, Дунай серебрится, блистая», а эволюция протекает. Так вот, долгие рассуждения, споры и попытки идти различными путями привели практически всех современных представителей в области микроэволюционного учения к следующему: элементарной структурой, лежащей в основе эволюционных процессов, является популяция, если популяцию определить следующим образом. Популяцией мы называем совокупность индивидов, занимающих некую территорию в широком смысле слова (это может быть и акватория), существующих биологически достаточно долгое время, то есть в течение многих поколений

Значит, во всяком случае можно наметить две важных вещи: элементарную эволюционную структуру — популяцию и элементарное эволюционное явление — изменение генотипического состава популяции. Я просто не имею времени, чтобы, так сказать, обдискутировать подробно вопрос: правильно или не правильно я вам предложил эти две вещи — элементарную эволюционную структуру и элементарное эволюционное явление, популяцию и изменение генотипического состава популяции. Могу только сказать, что вопрос этот дискутировался в разных группах людей, всерьез занимавшихся этими делами в течение более десятилетия. И все мы умнее ничего выдумать не могли. Что действительно ничего не придумаешь в качестве элементарной эволюционной структуры, кроме популяции в том виде, в котором я вам ее определил. И ничего умнее не выдумаешь в качестве элементарного эволюционного явления, чем изменение, биологически достаточно длительное, генотипического состава популяции. Действительно, повидимому, это можно считать бесспорным. В эти определения может
быть можно будет внести кое-какие поправочки, коррективы, но существенно ничего не изменится. Это действительно окончательное определение тех основных элементарных вещей, которыми приходится оперировать, рассуждая о механизмах эволюционного процесса.

Так вот, вам приходилось, наверное, слышать и придется часто слышать о различных формах так называемой плазматической наследственности. Это пока очень мало изученная область. Единственно достоверным является вот что: жизнь клетки сводится к тому, что центральная управляющая система — генотип, набор хромосом, работает в определенном клеточном антураже, в конечном счете им и созданным эволюционно. Каждый генотип координирован со своим плазмотипом, или плазмоном, так это назовем. И, по-видимому, не во всяком плазмоне генотип может работать."
Tags: biology4, books6
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 14 comments