Иванов-Петров Александр (ivanov_petrov) wrote,
Иванов-Петров Александр
ivanov_petrov

Category:

Лекции Тимофеева-Ресовского 1964 г.

Продолжение

"Это показывают знаменитые опыты Михаэлиса, который чуть не четверть века скрещивал в различных комбинациях разные виды иванчаев (Epilobium) и Epilobium hirsutum и целый ряд других видов. Он получил такую замечательную вещь. Вот если вид «А», и назовем его генотип маленьким «а», скрещивать с видом «В» — его генотип маленькое «Ь» — и сделать так, что «А» — это самка, «В» — самец, то есть взять яйцеклетку от «А», а от «В» пыльцу, то мы получаем гибрид, у которого плазма «А» (в пыльце практически плазма не содержится), а генотип «ab» у гибрида. И если теперь такую яйцеклетку скрестить опять с пыльцой «В», мы получим гибрид: плазмотип «А», а генотип уже «abb», так сказать, разбавлен еще больше «Ь». И вот начинается «петрушка». Эти самые растения стремятся загнуться, подохнуть, их очень мало жизнеспособных. То есть генотип преимущественно типа «Ь» в плазме «А» плохо работает. Такая же штука получается, если все это проделать реципрокно, то есть помаленьку вносить, скажем, генотип «а» в плазму «В» — не соответствуют они друг другу, получаются уродцы, и вообще они склонны «загнуться». Но вот что замечательно. Михаэлис, заменив в ряде скрещиваний, скажем, в плазме «А» генотип практически целиком на «Ь» (ему это удалось), все-таки эти паршиво живущие растеньица разводил дальше в течение целого ряда поколений, более 15-ти. И вот оказалась любопытная штука: они все лучше и лучше стали жить, пока не вернулись в норму, но в какую? Они стали «В». Значит, эта плазматическая наследственность оказалась своего рода временной. В конце концов победил генотип и «пересобачил» плазму клеток на свой манер так, как ему хочется. В некоторых линиях вектор скрещивания поменять удалось, многие вымерли, но все выжившие превратились в растения того типа, с теми признаками, которые связаны с соответствующим генотипом соответствующим хромосомным набором, а не соответствующей плазмой.

Это было установлено японцами и китайцами на шелковичном черве, а Стертевантом на улитках и было названо «материнской наследственностью». Дело сводится к следующему. У улиток, вы знаете, раковинка спирально закручена либо в виде плоской, либо в виде конусовидной спирали, причем есть виды, у которых одни формы образуют правую, а другие — левую спираль. Закручена либо так, либо этак. Стертевант скрестил этих улиток и получил очень занятную штуку: первое поколение — всегда в мамаш. Значит, яйцеклетки от правозакрученной улитки, оплодотворенные как правозакрученными, так и левозакрученными спермиями, дают правозакрученные. Яйцеклетки от левозакрученных, безразлично, чем их оплодотворять, дают левозакрученные. Но вот дальше-то все идет по Грише Менделю. В чем же дело? Очень просто. Здесь присутствующие зоологи должны знать, но большинство из них не знает типы дробления у беспозвоночных. У моллюсков так называемый спиральный тип дробления, то есть дробление зиготы идет по спирали, причем тип дробления, естественно, заложен в плазме относительно огромной яйцеклетки. В ней распределены всякие трофические и другие вещества. Тип же
строения яйцеклетки зависит от ее генотипа, и поэтому дробиться улитка, выросшая из оплодотворенной яйцеклетки, будет так и будет завернута так, как генетически было определено спиральное дробление в соответствующей яйцеклетке; вносимый при оплодотворении спермий уже ничего изменить не может. Но дальше-то у этого Fprim тип дробления будет такой, как положено по его генотипу, я уже забыл, что там доминантно, что рецессивно — правый или левый заворот. Кажется, у этого вида улитки правый заворот доминантен, левый рецессивен. Просто происходит отставание от генотипа на одно поколение. Естественное отставание, потому что в данном случае направление закручивания есть вовсе не признак первого поколения, а признак родительского поколения. Это признак яйцеклетки, сформировавшейся в материнском организме, а вовсе не признак улитки первого поколения.

Предсказывать и пророчествовать в естествознании всегда дело гнусное и никчемное. Поэтому пророчествовать нельзя, но в полной убедительности и достоверности можно утверждать следующее: если и имеются какие-либо формы наследственных изменений, которые нам еще не известны, то они, во всяком случае количественно, не играют большой роли по сравнению с теми, которые нам известны. Может быть, в исключительных случаях и бывают какие-нибудь плазмогены или еще какая-нибудь чертовщина, но, несмотря на огромное количество опытов, проводившихся с целью анализа возможности плазматической наследственности — кроме того, что я здесь говорил и что всетаки подтверждает примат генотипа, — ничего точного не известно.

Я назову вам один пример, небезынтересный в связи с тем, что он смог быть прослежен на протяжении сравнительно большого времени. Знаменитый русский академик Иван Иванович Лепехин во второй половине XVIII века, то есть 200 лет тому назад, путешествуя по Приуралью, изучал те места в естественно-историческом отношении. В Башкирии, примерно в районе Уфы, на башкирских пушных рынках он обнаружил сравнительно высокий процент шкурок хомяков черного цвета, меланистическую форму хомяков. Ну, хомяки распространены очень широко по всему северу и центру всей степной зоны, от Венгерской пушты на западе и Центральной Европы на западе до Сибири. Трехцветные, очень пестрые хомячьи шкурки были в некоторой цене и шли на отделку и украшение одежды и всяких бытовых вещей, поэтому они в большом количестве поступали на пушные рынки, и Лепехин был, пожалуй, первым зоологом в мире, который поинтересовался количественным учетом материала. Он обнаружил, что как раз в этих местах Башкирии, в районе низовьев рек Уфы и Белой, очень высокий процент меланистических хомяков. Так как Лепехин был знаменитым академиком (а людям свойственно унаследованное от обезьяньих предков подражание, и по лености отсутствует выраженное желание заниматься чем-то своим), то в течение вот уже двухсот лет подражатели стали говорить: «Ах, вот Лепехин открыл этих хомяков». И каждый, значит, дурак, который попадал в соответствующие места, считал своим долгом интересоваться меланистическими хомяками. Это обезьянье свойство ученых пошло на пользу науке, поэтому в течение двухсот лет накопился материал по концентрации в разных местах видового ареала хомяка Cricetulus, вот этих меланистов.

Всюду, где тщательно и точно проводятся скрещивания, оказывается, что природные таксоны отличаются конечным, иногда очень большим числом элементарных мутантных признаков. Каждый в отдельности дает простое менделевское расщепление; все вместе, конечно, дают крайне сложную картину полигибридного расщепления и фенотипического взаимодействия разных признаков, поэтому малограмотные люди часто говорят: «Вот, скрестили два далеких сорта пшеницы. Какие тут менделевские расщепления?» Ну, это просто результат
проведения совершенно безграмотного генетического анализа. Люди, плавающие в действительно огромном разнообразии комбинаций, не прослеживают того, что еще полтораста с лишним лет тому назад, как мы с вами в начале наших рассуждений видели, обнаружил Найт. Обнаружил на тех же пшеницах и прочих скрещиваниях растений, а именно — распад в скрещиваниях до элементарных признаков, которые дальше в скрещиваниях не распадаются. А из этих элементарных признаков каждый в отдельности дает простое менделевское расщепление.
Следовательно, мы приходим к заключению, что рассмотрение всех свойств и поведения мутаций показывает, что они, мутации, удовлетворяют всем тем требованиям, которые можно предъявлять к элементарному эволюционному материалу. И у нас нет никаких оснований их таковым не считать.

Мы рассмотрели три элементарных эволюционных фактора: мутационный процесс, популяционные волны и изоляцию. И надо сказать, что у всех этих факторов одна общая черта — они не векторизованные, а случайные, они работают статистично.

Но, как мы говорили в начале этих рассуждений, эволюция — процесс направленный, адаптивный и характеризующийся как филогенетической, так и онтогенетической дифференцировкой, что все вместе создает трудно точно определимый, но, так сказать, качественно вполне понятный так называемый эволюционный прогресс. Так вот, единственным фактором, который направляет эволюционный процесс, создает адаптации и тем самым в результате онтогенетической дифференцировки эволюционный прогресс, является естественный отбор.

Действительно, если соберется группа даже в четыре-пять человек, то на каждого расчетов мух окажется очень немного для того, чтобы в сумме по нужным типам скрещиваний дать статистически вполне достаточный материал, это раз плюнуть проделать. Единственное, что здесь нужно, это план и аккуратность. Без хорошего генетического практикума совершенно недостаточно вызубрить или проштудировать учебник генетики. Нужно посмотреть, как это выглядит в действительности. Так же как бесполезно заниматься только по книжке, скажем, математической статистикой. Если не решать соответствующие задачки и статистически не обрабатывать какой-то экспериментальный материал, то вы, будучи нематематиками, никогда не приобретете нужного понимания математико-статистических закономерностей, лежащих в основе целого ряда биологических явлений. То же самое и с генетикой.

Теперь о том, что в предвидимом будущем будет происходить в генетике. Ну, прежде всего, в ближайшем будущем будет бурно протекать то, что уже начало протекать.
Я несколько раз вам говорил, что современная так называемая молекулярная генетика и — более общо — молекулярная биология в целом есть не что иное, как логическое следствие развития хромосомной теории наследственности в генетике.
...Весьма вероятно, что основной генетический код и в хромосомах заключен в полимерах ДНК, но мы до сих пор точно не знаем принципа построения хромосомы.

...мне кажется, что сейчас существенно не это, а проблема физикохимической природы хромосом, еще совершенно не разработанная. Мы сейчас на самом деле знаем немногим больше, чем 25 лет тому назад. То есть мы точно знаем, что хромосомы — это нуклеопротеидные мицеллы, но как они в принципе построены и сколько их на элементарную хромосому, то есть на хроматиду, этого мы не знаем.
А вот то обстоятельство, что во всей живой природе, за исключением вирусов, фагов и, может быть, некоторых сине-зеленых и бактерий, у всех настоящих клеточных организмов основными кодами являются хромосомы, которые являются нуклеопротеидами, а отнюдь не голыми нуклеиновыми кислотами, и имеют какую-то сверхмолекулярную, или, как некоторые макромолекулярщики любят сейчас выражаться, третичную молекулярную структуру, не может быть случайностью. Это, конечно, имеет какой-то высший смысл, что в результате эволюционного процесса на нашей планете вот дело стабилизировалось так. Развитие на новом молекулярном уровне хромосомной теории наследственности — это одна из очередных задач наряду с продолжением прогресса молекулярной генетики. В области, так сказать, анализа основных генетических структур — это самое важное.

Во-вторых, на том же уровне очень существенным является развитие проблемы механизма мутаций. ......Вторая часть вопроса связана с химической и биохимической природой изменений в основных кодах наследственной информации, наступающих после образования первичного физического пускового механизма, определяющего мутацию. Мы очень мало об этом знаем.

...Что касается проблем менее грандиозных и глубоких, я бы сказал, что совершенно необходимо продолжение обычного генетического анализа максимального числа пригодных для этого видов животных, растений и микроорганизмов — для накопления сравнительногенетического материала. Не следует забывать, что в комплексных науках о природе, к каковым относится и биология по причине крайнего разнообразия подлежащего анализу материала, сравнительный метод до сих пор является и будет являться во всем предвидимом будущем одним из самых мощных методов в биологии. И потому необходимо всяческое развитие сравнительной генетики.

...Но опять-таки в сравнительном плане важно изучение генотипического состава любых популяций, любых видов живых организмов, растений и животных для накопления сравнительного материала. Особенно важным является изучение популяционной генетики, генотипического состава популяций в связи с динамикой соответствующих популяций — с одной стороны. И, с другой стороны, то, что пока совершенно не сделано — это изучение популяционной генетики в более усложненном варианте с переходом к популяционно-генетическому поведению в условиях биоценозов, то есть сообществ разных видов живых организмов в условиях стабильных систем из разных видов (систем, которые реально окружают нас в живой природе, в биосфере).

Так вот, чтобы этого не происходило, а человек действительно мог повышать, так сказать, оборачиваемость «оборотных» средств в биосфере, ускорять биологические круговороты и повышать тем самым продуктивность биосферы на единицу земной площади и общую биомассу биосферы, нужно понимание этих замечательных процессов стабилизации биоценозов. И весьма вероятно, что частично это будет лежать в анализе популяционно-генетических вещей в пределах не изолированной популяции, а с учетом вот такого
стабильного биоценоза.

Я должен опять, как и в том своем докладе, начать с напоминания о развитии современной физики. Физика — наука точная, и с одной стороны, физика — наука счастливая в том отношении, что гетерогенная комплексность подлежащего ее исследованию материала значительно меньше, чем в биологии, и даже, пожалуй, меньше, чем в химии. С другой стороны, физика в основном имеет дело и опирается на универсальные законы природы, то есть на такие законы природы и такие принципы, которые имеют действительно универсальное значение — многие универсально-космические и все универсально-земные. Ну, действительно, принцип всемирного тяготения распространяется и на нас с вами, и на любой живой организм. Мы падаем с потолка на пол, а не с пола на потолок. Да и по знаменитому историческому анекдоту Ньютон на биологическом материале — на яблоке — изучал всемирное тяготение. Так что большинство, да, собственно, все принципы и законы физики распространимы на все явления природы, включая, конечно, и биологические.

...Надо сказать, что в биологии дело обстоит совершенно иначе. Должен заметить, что и в физике, и в математике, и в любой точной дисциплине время от времени появляются — и не бездарные — ретрограды, которые либо смеха ради, чтобы пооригинальничать, либо всерьез становятся на какие-нибудь совершенно устарелые позиции. В точных дисциплинах это ведет либо к очень быстрому разоблачению, либо к тому, что иногда такое возрождение древней точки зрения может оказаться полезным. Затем она поступает в обработку, конечно, уже не с древних, а с современных позиций. Иногда ретроградство может иметь поисковое значение, но обыкновенно все же является оригинальничанием, которое быстро разоблачается. Вот в биологии ситуация совершенно другая. Большинство самых нормальных не ретроградных, а просто хороших биологов в смысле общих своих концепций и методологических естественно-исторических установок до сих пор работают с точек зрения примерно двухсотлетней давности. Есть, конечно, и передовые биологи, и таковых много и среди молодежи

...Проводя аналогии с физикой, нельзя забывать одного важного «недостатка» биологии. Я ведь начал с того, что физика испокон веков занимается установлением всеобщих, универсальных законов и принципов, наличествующих в окружающей нас природе. Вот биология этим не занималась, а благодаря невероятной комплексности биологических явлений не имела возможности с достаточной четкостью устанавливать даже универсальные биологические макропринципы. Таковых очень немного, и, пожалуй, единственным специфически биологическим является дарвиновский принцип отбора. Я, во всяком случае, другого не знаю. Потому что другой принцип — всеобщий биологический принцип конвариантной редупликации, или идентичного воспроизведения, конечно, — подлежит физическому объяснению. Это глубиннейшее биологическое явление, конечно, протекает по чисто физическим законам.

Для современных теоретических биологических рассуждений необходимо начинать с начала, а не от конца. Все поставить с головы на ноги. Не с крокодильего хвоста, а с того, что во времени поддерживает существование крокодильих хвостов, — соответствующих кодов информации, которые определяют специфическую совокупность признаков. И вот это является основой той современной концепции, которая совершенно необходима для правильного, действенного и бурного развития биологии в ближайшем будущем.
Таковое и произойдет по двум причинам: во-первых, как всегда в порядке ползучего эмпиризма, то есть более-менее бессознательно. Биологов — как собак нерезаных — до черта на свете. Армия биологов сейчас почти неисчислима, их неприлично много. Скоро, например, этих самых — по старой терминологии — мужиков, а по современной — работников колхоза будет много меньше, чем биологов. Это прогресс науки и регресс питания, потому что один колхозник может прокормить ограниченное количество биологов, а не бесконечное. Так вот, среди этой огромной армии биологов есть много людей, бессознательно идущих правильным путем — это всегда бывает. Хотя по теории вероятности большинство бессознательно идет всегда неправильными путями, но определенный процент идет бессознательно правильным путем.
Это во-первых; а во-вторых, в мире все-таки имеется достаточное число «затравочных», действительно умных биологов, которые совершенно сознательно идут правильным путем и совершенно сознательно направляют развитие или стараются направить развитие современной биологии в пределах своих возможностей в правильном направлении.

В XX веке генетика создала основы нового подхода к решению биологических проблем. И биохимикам удалось прыжком поднять проблематику современной биохимии на совершенно новый уровень, в то время как у нас до сих путаются и никак не могут распутаться, что такое физиологическая химия, что такое современная биохимия, а что вообще органический анализ. Определение крахмала в картошке, понимаете ли. А вот в современной проблематике путаются по периферии и в пустяках. А все действительно большие проблемы в современной биохимии выросли из правильных теоретических концепций, правильных теоретических установок. То же самое можно сказать и о современных эволюционных представлениях. Об этом мы уже с вами специально говорили, рассматривая эволюцию. Опять-таки не зоологи, не ботаники, по старинке занимавшиеся эволюционными спорами на основании изучения одуванчиков, создали современные представления в области эволюционного учения, а генетики и математики, которые постарались, дали себе труд посмотреть, что же должно делаться вот с этими кодами в популяциях, в биоценозах во времени и пространстве, исходя из известного о том, что определяет судьбу этих кодов. Исходя из известного обо всех этих давлениях изоляции, мутационного процесса, популяционных волн, естественного отбора, о которых мы с вами говорили. Постарались посмотреть с этой точки зрения, и родился совершенно новый уровень эволюционного учения, на фоне которого ковыряние до сих пор многих зоологов и ботаников, очень хорошо знающих определенную локальную фауну и флору, разделы физиологии таких-то животных или сяких-то растений, представляется наивным, устарелым и совершенно для нашего брата, современного биолога, необязательным. Ведь с этими концепциями никто из умных-то людей сейчас уже не спорит, и спорить бесполезно. Ковыряешься? Пожалуйста! Как говорится, в слоновых хоботах ковыряться можно. При этом, если это ковыряние незаносчивое, усидчивое и точное, то какой-то полезный материал накапливается всегда. Но эти теоретические концепции, конечно, настолько ретроградны, неинтересны и никому сейчас не нужны, что на них просто не обращают внимания.

...Я бы сказал, что это достойно сожаления, потому что современную биологию характеризует огромное количество производимой работы. Никогда в истории науки не производилась такая огромная биологическая работа, как сейчас. За последнюю пару десятилетий она выросла во всем мире, но особенно у нас. Армия биологов громадна. Биологическая проблематика крайне важна, но 90% биологической работы именно из-за теоретической непродуманности и не использования современных естественно-научных, и в частности общих биологических концепций, идет почти впустую. ...В переводе, так сказать, на экономический язык это означает крайне низкий КПД (коэффициент полезного действия).
В частных случаях это происходит из-за неграмотного и неправильного применения математики или математической статистики, а в общей форме то же самое происходит в результате того, что большинство биологов исходят из неправильных, несовременных общих концепций. Потому что прежде всего правильные современные общие биологические концепции могут и должны определять выбор и характер материала, подлежащего обработке.

Вот, например, полевой зоолог. Мало ли чем полевой зоолог может заниматься! Нужно, значит, выбрать себе такую проблему, которая при разумной затрате времени и сил даст максимум информации для решения какого-то общего вопроса или общей проблемы. Для того чтобы определить, какой общий вопрос или общую проблему решать, нужно быть современным, то есть исходить не из нужд времен Карлуши Дарвина, а из сегодняшних нужд. А для того, чтобы правильно выбрать материал и характер работы, нужно опять-таки исходить из правильных общих концепций, потому что с точки зрения одних концепций можно делать так-то и то-то, а с точки зрения других концепций лучше так-то и то-то.

Это же классические вещи на высоком теоретическом уровне! И надо сказать, что в такой классической описательной зоологии и ботанике за последнее столетие средний уровень работы крайне низко упал. Прежде всего поражает ничтожный КПД. За государственный счет или за счет каких-нибудь там за границей ученых обществ проделывается огромная работа, результаты которой имеют чисто временное значение, через пять лет они уже никого не интересуют, а теоретически из этого вообще ничего не следует. И это связано с неправильными общими естественноисторическими концепциями.

В биологии, повторяю, большого расцвета и развития большой проблематики не происходит вне точной естественноисторической методологии, а в XX веке — вне новых научных концепций."
Tags: biology4, books6
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 0 comments