Немного согласия в мутной воде
http://ivanov-petrov.livejournal.com/1555583.html?thread=77251711#t77251711
boldachev
"математическое знание - это не наука".
Проблема решается именно не признанием за философией и математикой статуса наук. Любое математическое высказывание есть высказывание о нем же самом, а не о чем-то внешнем математике, и истинность этого высказывания проверяется там же - не выходя за пределы математики. Аналогично и в философии: философское высказывание есть высказывание о мыслях философа и верифицируется в рамках его же мышления. Поэтому философские и математические системы не фальсифицируемы - мы не можем опровергнуть никакую философскую систему, ни опровергнуть доказанную (без ошибок) теорему. Это в отличие от научных систем, которые всегда могут быть подвергнуты сомнению в будущем при обнаружении новых эмпирических данных.
Тут еще можно заметить, что и в математике, и в философии проблема доверия формально выведена за пределы их - в априорные области: в математике в область аксиом, а в философии в область веры в свое истинность мировоззрения.
ivanov_petrov
ну, если честно, я иронизировал.
я думал, что наука.
но многие говорят, что - нет.
но как решается проблема выведением математики из науки?
boldachev
Решается просто/сложно - фиксацией границ науки.
( Collapse )
"математическое знание - это не наука".
Проблема решается именно не признанием за философией и математикой статуса наук. Любое математическое высказывание есть высказывание о нем же самом, а не о чем-то внешнем математике, и истинность этого высказывания проверяется там же - не выходя за пределы математики. Аналогично и в философии: философское высказывание есть высказывание о мыслях философа и верифицируется в рамках его же мышления. Поэтому философские и математические системы не фальсифицируемы - мы не можем опровергнуть никакую философскую систему, ни опровергнуть доказанную (без ошибок) теорему. Это в отличие от научных систем, которые всегда могут быть подвергнуты сомнению в будущем при обнаружении новых эмпирических данных.
Тут еще можно заметить, что и в математике, и в философии проблема доверия формально выведена за пределы их - в априорные области: в математике в область аксиом, а в философии в область веры в свое истинность мировоззрения.
ну, если честно, я иронизировал.
я думал, что наука.
но многие говорят, что - нет.
но как решается проблема выведением математики из науки?
Решается просто/сложно - фиксацией границ науки.
( Collapse )