Итак, вопросы, без которых история математики по сути не может существовать.
1. Какова была математическая мысль Индии, Вавилона, Египта? Иожно говорить, что «наша» математика началась в Греции независимо от предшествующей истории – и тем не менее, понять историю математики не удастся, пока не будет прояснен характер этой индийской, вавилонской и т.д. математики. При этом нужно именно положительное определение – не разговор о том, чего нет и не хватает в этой древней математике с сегодняшней точки зрения, а подход, умеющий услышать молчание. Чтобы выразить это содержание древней математики, надо смотреть не из сегодняшнего образа этой науки, задавая себе примерно такой вопрос: какими должны быть мысли и идеи математика, если он говорит только «это» (скажем, индийские «примеры решений» - наряду с изощренной логикой) и не говорит ничего другого.
2. Следующий этап начался со сломом этой математической традиции. Это именно слом некоторой «парадигмы» математического мышления. Что изменилось в способе математического мышления, чтобы смогла появиться греческая математика? Следует оставить наивные разговоры о «свободных духом пластических греках», математик должен внятно говорить – как и в чем изменилась математическая парадигма мышления.
3. Следующий этап – пифагорейская традиция; следует учесть. Что длился он (ослабевая и все менее внятный) до 17-го века. Весь этот огромный период надо увидеть как целое. Сейчас этот этап не понимают, положение дел в истории математики – как в общей истории, когда после Греции сразу переходили в Новое время, опуская Темные века. Исходят из школьного представления о единственной дороге развития математики, спрямляя пути развития в меру своего разумения. Надо увидеть в пифагорейской математике иной способ математического мышления, еще живой, скажем, у Кеплера. При этом должна обнаружиться тождественность математики, скажем, Кузанского и Коперника, и выявиться отсутствие существенного разрыва между Птолемеем и Коперником.
4. Математика в современном понимании возникла в руках Декарта и Ферма: «создание алгебры», «алгебраической геометрии». Что именно произошло? Какое существенное изменение в математическом мышлении позволило прервать традицию длительностью чуть не в 2400 лет? Создать новую форму мыслей о математике? Следует ставить вопрос именно так. Любое уменьшение значимости этого разрыва не позволит понять. Что произошло – и описать историю. При этом данный пункт не говорит об одномоментном переломе: ясно. что многое было намечено Галилеем, переход к иной традиции происходил достаточно постепенно, и дело не в имени Декарта, а в указании на качественное изменение математической мысли.
5. После Декарта продолжается до сих пор один этап. В этом смысле детали споров современных математиков – мелкие разборки меж своими. Надо за разнообразием современных школ и «непримиримых врагов» видеть существенное единство. Я бы предложил следующую аналогию. Предположим, «выяснилось», что 95% великих математиков нового времени были рыжими. Или имели какую-то еще редкую отличительную черту. Вот примерно таким образом выделяются все крупные математики 19-20 веков – они чрезвычайно похожи. Историю этой новой математики пишут, передвигаясь по созвездию великих имен, заостряя различие их подходов – прежде, чем писать об этом, надо охарактеризовать их существеннейшее сходство. Сейчас это не делается именно потому. что такое сходство уходит в «подсознание» истории математики, полагается само собой разумеющимся в силу единственности наличной математики. Только осознавая неединственность и странность современной математики, можно различить ее единство. Великие имена очень сходных деятелей слепят глаза и не позволяют различить в современности иные традиции. Математика время от времени пытается выработать иные пути развития, их надо отследить. Посмотрев на то. что возникало в математической мысли вопреки Ньютону; найти не тупиковые и бесплодные (с точки зрения победителей) взгляды, которые их творцам казались вполне плодотворными. Увидеть тупики как неосуществленные возможности.
Надо представить себе объем истории – исходя из которого и будет определяться будущее состояние математики. Пока известна лишь траектория современной математики, но не известно пространство возможностей, в котором проходит эта траектория. Для этого и следует отыскать не-единомышленников, выстраивавших математику иначе.
Для краткости я опустил полагающиеся извинения. Я – не математик, за слова свои ответственности не несу, доказывать их не буду: я только выразил мнение читателя, который раз открывающего книгу по истории математики и находящего даже в лучших – одно и то же: сказку для отличников
← Ctrl ← Alt
Ctrl → Alt →
← Ctrl ← Alt
Ctrl → Alt →